首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27151篇
  免费   2767篇
  国内免费   1950篇
电工技术   1218篇
综合类   1454篇
化学工业   7055篇
金属工艺   3245篇
机械仪表   696篇
建筑科学   1297篇
矿业工程   430篇
能源动力   3202篇
轻工业   1024篇
水利工程   341篇
石油天然气   4363篇
武器工业   111篇
无线电   1346篇
一般工业技术   3675篇
冶金工业   1287篇
原子能技术   716篇
自动化技术   408篇
  2024年   58篇
  2023年   778篇
  2022年   979篇
  2021年   1094篇
  2020年   1087篇
  2019年   1027篇
  2018年   917篇
  2017年   933篇
  2016年   962篇
  2015年   942篇
  2014年   1485篇
  2013年   1716篇
  2012年   1739篇
  2011年   1818篇
  2010年   1426篇
  2009年   1406篇
  2008年   1251篇
  2007年   1539篇
  2006年   1521篇
  2005年   1373篇
  2004年   1273篇
  2003年   1131篇
  2002年   975篇
  2001年   820篇
  2000年   651篇
  1999年   538篇
  1998年   441篇
  1997年   350篇
  1996年   290篇
  1995年   259篇
  1994年   227篇
  1993年   147篇
  1992年   125篇
  1991年   104篇
  1990年   128篇
  1989年   80篇
  1988年   55篇
  1987年   35篇
  1986年   17篇
  1985年   35篇
  1984年   40篇
  1983年   20篇
  1982年   16篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1964年   4篇
  1959年   4篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Reformed exhaust gas recirculation technology has attracted great attention in internal combustion engines. A platform of an exhaust gas-fuel reformer connected with the marine LNG engine was set up for generating on-board hydrogen. Based on the platform, effects of the methane to oxygen ratio (M/O) and reformed exhaust gas ratio (REG) from the reformer and excess air ratio (λ) from the engine on the components, hydrogen yield, thermal efficiency and reforming process of the reformer were experimentally investigated. Results shown that hydrogen-rich gases (reformate) can be generated by reforming the mixture of engine exhaust gas (about 400 °C) and methane supplied via the reformer with Ni/Al2O3 catalyst, and the hydrogen concentration of reformate was between 6.2% and 12.6% by volume. The methane supplied rate and λ affected the components and temperature of the reactant in the reformer, while REG changed the gas hour space velocity during the exhaust gas-fuel reforming processes, resulting in the difference in the components of the reformate and thermal efficiency. At the present experimental condition, the highest H2 concentration reformate was generated under the M/O of 2.0, λ of 1.55 and REG of 6%.  相似文献   
12.
Adjusting the band gap of organic-inorganic composites by chemical bonding can effectively construct Step-scheme (S-scheme) heterojunctions, featuring properties of fast photogenerated charge migration and excellent photocatalytic performance. In this work, a novel perylene-3, 4, 9, 10-tetracarboxylicdiimide (PDI)-titanium dioxide (TiO2) heterojunction is elaborately synthesized through simple solvent compounding method. The monodispersed spherical TiO2 nanoparticles was prepared with the capping agents of oleylamine and oleic acid, and suffered by a ligand exchange process with nitrosonium tetrafluoroborate (NOBF4) to remove oleylamine and oleic acid. The NOBF4 ligands were further replaced by PDI super molecular nanosheets to obtain two dimensional (2D)-zero dimensional (0D) PDI-TiO2 composites. TiO2 nanoparticles are evenly anchored on the surface of PDI nanosheets with intimate contact. The PDI-TiO2 composites has emerged considerably superior activity in hydrogen evolution. The highest hydrogen evolution rate for PDI-TiO2composites with the PDI weight percentage of 2.4% was 9766 μmol h?1 g?1 under solar light irradiation, which is 2.56 times of TiO2-NOBF4 catalyst. Moreover, PDI-TiO2 composites possess stoichiometric overall water splitting performance with H2 and O2 release rates of 238.20 and 114.18 μmol h?1 g?1. The superior photocatalytic performance of PDI-TiO2 composites can be attributed to the dramatic increase in visible and NIR light absorption caused by π-π stacking structure of PDI, the prevented charge recombination by the S-scheme heterojunction, and the enhanced oxygen evolution by the stronger oxidation capability of PDI. PDI supramolecular nanosheets may work as a novel functional support for many types of semiconductor nanomaterials as graphene, which will display a wide range of application prospects in the energy and environmental fields.  相似文献   
13.
14.
This study was conducted to estimate the potential for green H2 in Paraguay. A total production potential of 22.5 × 106 tons/year was obtained with a main contribution (93.34%) from solar photovoltaic. The greatest potential for producing H2 from solar and wind resources is in the Western region, and from hydro resources is in the Eastern region of the country. Two end-uses of green H2 were assessed: (1) automotive transportation, replacing gasoline and diesel; and (2) residential energy, replacing firewood and LPG for cooking in households across the country. In 16 of the 17 departments, green H2 is able to replace the overall consumption of gasoline and diesel, as well as firewood and LPG. Finally, energy service cost (mobility), environmental aspects and CO2 emissions were considered for three urban mobility technologies for the Metropolitan Area of Asunción. Results show that the mobility cost of fuel cell hybrid electric buses is still very high in comparison to diesel buses and battery electric buses. However, when a longer driving range is required, fuel cell hybrid electric buses could become a viable alternative in the long term. From an environmental point of view, green H2 used in fuel cell hybrid electric buses has the potential to save about 96% of CO2 emissions in comparison to diesel buses. It is concluded that the estimated green H2 production potential favors the incorporation of the Hydrogen Economy in Paraguay.  相似文献   
15.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   
16.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
17.
The Markov model and the PEM electrolyzer system model for directly coupled photovoltaic are combined to construct an efficient and reliable working condition that fits the fluctuation characteristics of solar energy. The working condition is designed through genetic algorithm so that the average coupling efficiency of the system can reach 98.8%. Then, the durability and recovery test are conducted on the basis of the constructed conditions. It is found that the attenuation rate at the current density of 1A/cm2 under the photovoltaic fluctuating condition reached 7.8mV/h, which is twice that under the constant current condition. The charge transfer impedance (Rct) is the main factor leading to the degradation. It is proved by the recovery experiment that the increase of Rct is related to the pollution of metal ions. After pickling to remove some metal ions, Rct can be significantly reduced by 46.8% and 65.2%, respectively. After the durability test, the voltammetric charges under the photovoltaic fluctuating condition and the constant current condition are reduced by 48.3% and 19.1% It indicates that the photovoltaic fluctuation condition will accelerate the attenuation of the effective reaction area of MEA, which is irreversible even after pickling. It can be observed from the SEM images that the catalyst layer of MEA has more obvious peeling under the photovoltaic fluctuation condition, which is not conducive to material transmission and destroys the transmission channel of ions and electrons. This result can provide a reliable reference for the coupling design of PEM electrolyzer and renewable energy in the future.  相似文献   
18.
Electrocatalytic hydrogen evolution in alkaline and neutral media offers the possibility of adopting platinum-free electrocatalysts for large-scale electrochemical production of pure hydrogen fuel, but most state-of-the-art electrocatalytic materials based on nonprecious transition metals operate at high overpotentials. Here, a monolithic nanoporous multielemental CuAlNiMoFe electrode with electroactive high-entropy CuNiMoFe surface is reported to hold great promise as cost-effective electrocatalyst for hydrogen evolution reaction (HER) in alkaline and neutral media. By virtue of a surface high-entropy alloy composed of dissimilar Cu, Ni, Mo, and Fe metals offering bifunctional electrocatalytic sites with enhanced kinetics for water dissociation and adsorption/desorption of reactive hydrogen intermediates, and hierarchical nanoporous Cu scaffold facilitating electron transfer/mass transport, the nanoporous CuAlNiMoFe electrode exhibits superior nonacidic HER electrocatalysis. It only takes overpotentials as low as ≈240 and ≈183 mV to reach current densities of ≈1840 and ≈100 mA cm−2 in 1 m  KOH and pH 7 buffer electrolytes, respectively; ≈46- and ≈14-fold higher than those of ternary CuAlNi electrode with bimetallic Cu–Ni surface alloy. The outstanding electrocatalytic properties make nonprecious multielemental alloys attractive candidates as high-performance nonacidic HER electrocatalytic electrodes in water electrolysis.  相似文献   
19.
某电力公司变电站用铝合金设备线夹在运行过程发生批次开裂事故,通过宏观观察、断口分析、化学成分分析、力学性能测试、冷冻模拟试验等方法,对设备线夹的开裂原因和开裂机理进行了分析。结果表明:设备线夹焊缝存在焊接缺陷,导致焊缝强度下降;设备线夹接线管底部存在积水空间,寒冷天气下积水结冰,体积膨胀,使焊缝承受设计工况外的负载而过载开裂,造成了线夹开裂。  相似文献   
20.
The quantification of hydrogen peroxide(H_2O_2) generated in the plasma-liquid interactions is of great importance, since the H_2O_2 species is vital for the applications of the plasma-liquid system.Herein, we report on in situ quantification of the aqueous H_2O_2(H_2O_2 aq) using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode. The results show that the H_2O_2 aqyield is 8–12 times larger when the liquid acts as a cathode than when the liquid acts as an anode. The conversion rate of the gaseous OH radicals to H_2O_2 aqis 4–6 times greater in the former case. However, the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of n M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号